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Abstract. The uniaxial bianisotropic-ferrite medium, which can be fabricated by polymer
synthesis techniques, is a generalization of the well-studied chiral medium. It has potential
applications in the design of antireflection coating, antenna radomes, and novel microwave
components. In the present investigation, based on the concept of spectral eigenwaves,
eigenfunction expansion of the Green dyadics in this class of materials is formulated in terms of
the cylindrical vector wavefunctions. The formulations are greatly simplified by analytically
evaluating the integrals with respect to the spectral longitudinal and radial wavenumbers,
respectively. The analysis indicates that the solutions of the source-incorporated Maxwell’s
equations for a homogeneous uniaxial bianisotropic-ferrite medium are composed of two (or four)
eigenwaves travelling with different wavenumbers. Each of these eigenwaves is a superposition
of two transverse waves and a longitudinal wave. The Green dyadics of planarly and cylindrically
multilayered structures consisting of uniaxial bianisotropic-ferrite media can be straightforwardly
obtained by applying the method of scattering superposition and appropriate electromagnetic
boundary conditions respectively. The resulting formulations, which can be theoretically verified
by comparing their special forms with existing results, provide fundamental basis to analyse the
physical phenomena of unbounded and multilayered uniaxial bianisotropic-ferrite media.

1. Introduction

The concept of vector wavefunctions was first proposed by Hansen [1] to solve source-
free Maxwell’s equations in isotropic media. This vector-wavefunction approach has been
intensively developed by Felsen and Marcuvitz [2], Morse and Feshbach [3], and Tai [4], to
investigate the source-incorporated electromagnetic boundary value phenomena of isotropic
media. It has been discovered that for some types of electromagnetic boundary value
problems of isotropic media (e.g. microstrip wraparound antennas [5], circular-shaped
microwave radiators [6, 7], and excitations of cylindrical waveguides and cavities [8]),
field representations and Green dyadics by the cylindrical vector wavefunctions are more
useful than those by the planar vector wavefunctions. Recently, field representations by
the cylindrical vector wavefunctions were presented for the source-free gyroelectric chiral
media [9], composite chiral-ferrite media [10], reciprocal uniaxial bianisotropic media [11],
and uniaxial bianisotropic-ferrite media [12]. However, analytic solutions to the source-
incorporated Maxwell’s equations in any given complex media still need to be developed,
so as to provide methodological convenience in studying the physical phenomena of these
materials.
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The Green dyadic in one of the basic tools that are used to solve source-incorporated
Maxwell’s equations [4, 13, 14]. It is useful both in analysing radiation problems [4, 14, 15]
and in constructing integral equations for scattering phenomena [16, 17]. The general
representation of the Green dyadic expressed in terms of an expansion of the vector
wavefunctions are required to study Raman and fluorescent scattering by active molecules
embedded in a particle [18, 19], as well as to establishT -matrix formulation from Huygens’s
principle and extinction theorem [20, 21]. Furthermore, eigenfunction expansion of the
Green dyadics could also provide fundamental insight into the physical process of the
material under consideration. However, much effort is still required in order to obtain
the Green dyadics in any given complex media when expressed in the full eigenfunction
expansion of the vector wavefunctions.

With recent advances in polymer synthesis techniques, increasing attention is being
attracted to the analysis of interaction between electromagnetic waves and novel microwave
material [11, 22, 23], in order to determine how to use these materials to provide better
solutions to current engineering problems. Among these novel microwave materials, one
should mention the uniaxial bianisotropic-ferrite medium [12] because of its potential
applications in microwave technology, antenna design, and particularly in antireflection
coating. In practice, a uniaxial bianisotropic-ferrite medium with linear magnetoelectric
interaction can be fabricated by arranging two types of microstructures (short helices and
�-shaped elements) in the same magnetized ferrite host material. From a phenomenological
point of view, a homogeneous uniaxial bianisotropic-ferrite medium can be characterized
by the set of constitutive relations [12]. (In the following analysis, the harmonic eiωt time
dependence of the fields and exciting sources is assumed and suppressed throughout.)

D(r) = ε̄ · E(r) + ξ̄ · H(r) (1a)

B(r) = µ̄ · H(r) + ζ̄ · E(r) (1b)

where

ε̄ = εt Īt + εzezez (2a)

and

µ̄ = µt Īt + µzezez − igez × Īt (2b)

are permittivity and permeability dyadics, respectively.

ξ̄ = i(µ0ε0)
1/2(−αĪt + βez × Īt − γezez) (2c)

and

ζ̄ = i(µ0ε0)
1/2(αĪt + βez × Īt + γezez) (2d)

are the magnetoelectric pseudo-dyadics. Here,Īt = exex +eyey denotes the transverse unit
dyadic, andej represents the unit vector in thej direction. Instead of three constitutive
parameters for the well-studied chiral media [24, 25], we are facing a medium with eight
constitutive parameters. It is apparent that the constitutive dyadics of the medium satisfy
the nonreciprocity conditions [26] and uniformity constraint condition [27]. For the lossless
uniaxial bianisotropic-ferrite medium, the constitutive parametersεt , εz, µt , µz, g, α, β,
andγ are all real, which are assumed through the present consideration.

It should be mentioned that the constitutive relations (1) and (2) are formulated in
the complex domain, not in the real and physical space. In physical space, the real and
measurable fieldsD(r, t), B(r, t), E(r, t), andH(r, t) are defined to be the real parts of
D(r)eiωt , B(r)eiωt , E(r)eiωt , andH(r)eiωt , respectively. As interpreted and used in [23],
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the constitutive relations described in the complex domain can greatly simplify the analytical
formulation.

In physical space, the constitutive relations of the material we treat could be written as

D(r, t) = ε̄′ · E(r, t) + ξ̄
′ · ∂H(r, t)

∂t
(1a′)

B(r, t) = µ̄′ · H(r, t) + µ̄′′ · ∂H(r, t)

∂t
+ ζ̄

′ · ∂E(r, t)

∂t
(1b′)

where

ε̄′ = ε̄ (2a′)
µ̄′ = µt Īt + µzezez µ̄′′ = −g′ez × Īt (2b′)

ξ̄
′ = (µ0ε0)

1/2(−α′Īt + β ′ez × Īt − γ ′ezez) (2c′)

ζ̄
′ = (µ0ε0)

1/2(α′Īt + β ′ez × Īt + γ ′ezez) (2d′)

for time harmonic eiωt time dependence of the fields,g′ = g/ω, α′ = α/ω, β ′ = β/ω, and
γ ′ = γ /ω.

To have an idea of a medium with constitutive dyadics of the above forms, we first note
that the special case withg = β = γ = 0, corresponds to the transversely chiral uniaxial
bianisotropic medium studied earlier [28]. This medium can be created by suspending metal
helices in a host dielectric in such a way that the axes of all helices are perpendicular to
the z-axis, but possess arbitrary orientations and locations. In another special case with
g = α = γ = 0, the present medium becomes the uniaxial omega medium [29], which may
be fabricated by immersing two ensembles of orthogonally positioned�-shaped particles
in a host isotropic medium. Wheng = α = β = 0, the medium is called a uniaxial chiral
medium [30], which can be realized by mixing randomly oriented conductive helices with
an isotropic base medium in such a manner that the axes of all helices are parallel to the
z-axis. The medium under consideration reduces to a uniaxial chiro-omega medium, asγ

and g vanish [31]. Uniaxial chiro-omega medium, fabricated by immersing both metal
helices and�-shaped elements in the same host isotropic medium in a certain manner, may
find applications in designing antireflection coatings and antenna radomes.

Since the constitutive relations (1) and (2) recover the cases of transversely
chiral uniaxial bianisotropic medium [28], uniaxial omega medium [29], uniaxial chiral
medium [30], and uniaxial chiro-omega medium [31], it is reasonable to consider that these
constitutive relations could characterize the material we will try to treat in the complex
domain.

The uniaxial bianisotropic-ferrite medium is a subset of the wider class referred to as
bianisotropic media. Important research on general bianisotropic media have been presented
by Post [32], Kong [26], and Chen [33] among others. In contradistinction to these general
considerations, the present contribution is intended to derive the eigenfunction expansion
of the Green dyadics in a homogeneous uniaxial bianisotropic-ferrite medium in terms of
the cylindrical vector wavefunctions. Based on the completeness property of the spectral
eigenwaves in the Fourier transformation spectral domain, the present formulations are
considerably simplified by analytically evaluating the integrals, with respect to the spectral
longitudinal and radial wavenumbers. respectively. This extended method, which is standard
and straightforward, leads to two sets of the eigenfunction expansion of the Green dyadics in
an unbounded uniaxial bianisotropic-ferrite medium by the cylindrical vector wavefunctions.
The analysis indicates that the solutions of the source-incorporated Maxwell’s equations for
a uniaxial bianisotropic-ferrite medium are composed of two (or four) eigenwaves travelling
with different wavenumbers. Each of these eigenwaves is a superposition of two transverse
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waves and a longitudinal wave. It is also found that the Sommerfeld–Weyl-type integrals of
dipole radiation in a uniaxial bianisotropic-ferrite medium involve only those Sommerfeld–
Weyl-type integrals of dipole radiation in an isotropic medium. The present formulations
can be used to construct the Green dyadics of planarly and cylindrically multilayered
structures consisting of uniaxial bianisotropic-ferrite media, by employing the method of
scattering superpositions [4, 24, 25]. The greatest advantage of the eigenfunction expansion
of the Green dyadics, as presented here, is that it provides fundamental insight into the
physical process of the uniaxial bianisotropic-ferrite medium, and lays the foundation to
study the source-incorporated electromagnetic phenomena involving uniaxial bianisotropic-
ferrite media (e.g. Raman and fluorescent scattering by active molecules embedded in a
uniaxial bianisotropic-ferrite medium).

A closed-form expression of the Green dyadic for a special class of uniaxial bianisotropic
media withg = α = β = 0, was derived first for the reciprocal case [34], and later for the
nonreciprocal caseg = 0, andez · ξ̄ ·ez 6= −ez · ζ̄ ·ez [35]. In [36], a rigorous investigation
was presented by Weiglhofer for the possibility of deriving the closed-form representations
of the Green dyadics in a general uniaxial media. In that paper, it was shown that at least
one of three possible relations among the constitutive parameters has to be satisfied to allow
the closed-form solution of the Green dyadics. It was also pointed out, however, that these
relations are only necessary relations and not sufficient relations to allow the closed-form
solution. The most important of these three cases is the case withg = β = γ = 0, for
which the closed-form solutions of the Green dyadics were presented in [36]. Most recently,
Olyslager [37] presented the closed-form representations of the Green dyadics for a uniaxial
bianisotropic media withg = β = 0. In view of the uniformity constraint condition for
the uniaxial bianisotropic media [27], the materials treated in [34–37] are just the special
cases of the media studied here. The methods used by the authors of [34–37] do not seem
to be applicable for the present uniaxial bianisotropic-ferrite media to allow the closed-
form representations of the Green dyadics. Moreover, the Green dyadics represented in the
forms of the eigenfunction expansion seem to be more important and attractive than those
expressed in the closed forms in practical applications (e.g. to study Raman and fluorescent
scattering by active molecules embedded in the given complex media, to establishT -matrix
formulation for the electromagnetic boundary value problems involving complex media, and
to take an insight into the physical process of the material under construction).

2. Eigenwaves in uniaxial bianisotropic-ferrite medium

Substituting the constitutive relations (1(a)) and (1(b)) into the source-incorporated
Maxwell’s equations, a compact form of the field equations in the uniaxial bianisotropic-
ferrite medium is obtained(

ωε̄ ωξ̄ + i∇×
ωζ̄ − i∇× ωµ̄

) (
E(r)

H(r)

)
=

(
iJ(r)

iM (r)

)
(3)

whereJ andM denote the electric and magnetic exciting currents, respectively.
To examine the physical properties of the eigenwaves in the uniaxial bianisotropic-

ferrite medium, Fourier transformation for the electromagnetic fields and exciting sources
is introduced:

F (r) = 1

8π3

∫ ∞

−∞
F (k)e−ik·r dk (4)
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whereF = E, H, J , or M , andk = kxex + kyey + kzez. Then, (3) can be rewritten in
the Fourier spectral domain(

ωε̄ ωξ̄ + k×
ωζ̄ − k× ωµ̄

) (
E(k)

H(k)

)
=

(
iJ(k)

iM (k)

)
. (5)

For the sake of brevity, (5) is denoted as

L̄ · Ψ(k) = Φ(k) (6)

whereL̄ is a Hermitian operator (̄L = L̄∗T , where the superscripts asterisk andT represent
the complex conjugate and transpose operators, respectively). Here,

Ψ(k) = [E(k), H(k)]T and Φ(k) = [iJ(k), iM (k)]T .

The characteristic equation, which determines the wavenumbers of the eigenwaves
propagating in the uniaxial bianisotropic-ferrite medium, can be straightforwardly obtained
by requiring the determinant of operatorL̄ be zero. Algebraic manipulation results in

ε′(f 2 − a)k4
ρ + [(k2

z − a)(e2 + f 2 − a − ε′a′) + (bkz + c)(bkz − 2ekz + c)]k2
ρ

−[(k2
z − a)2 + (bkz + c)2]a′ = 0 (7)

wherekρ = (k2
x + k2

y)
1/2, and

a = ω2[εtµt − ε0µ0(α
2 + β2)]

b = 2ik0α

c = iω2g

e = ik0(α + γ ε′)
f = ik0β

ε′ = εt/εz

a′ = ω2(εtµz − ε0µ0γ
2ε′).

(8)

It is obvious that the characteristic equation (7) is an even function ofkρ . We can regard this
characteristic equation (7) as a function ofkρ (or kz), wherekρ (or kz) is determined bykz

(or kρ). The roots of (7) are designed askρ = kρq (or kz = kzq), whereq = 1, 2, 3 and 4.
It is worthy to note the important property of the roots of (7):kρq (or kzq) is independent
of φk, with φk = tg−1(ky/kx).

The eigenwaves corresponding to theqth root of (7), expressed in a circular cylindrical
coordinate system, can be derived by substituting eitherkρ = kρq or kz = kzq in the
following expression

Ψσ
q (k) =


Eσ

qρ(k)

Eσ
qφ(k)

Eσ
qz(k)

Hσ
qρ(k)

Hσ
qφ(k)

Hσ
qz(k)




Cσ

q (kρ, kz) cos(φ − φk) + Dσ
q (kρ, kz) sin(φ − φk)

−Cσ
q (kρ, kz) sin(φ − φk) + Dσ

q (kρ, kz) cos(φ − φk)
1

ωεz
[ik0γ − kρB

σ
q (kρ, kz)]

Aσ
q (kρ, kz) cos(φ − φk) + Bσ

q (kρ, kz) sin(φ − φk)

−Aσ
q (kρ, kz) sin(φ − φk) + Dσ

q (kρ, kz) cos(φ − φk)

1

 (9)

with φ = tg−1(y/x), σ = ρ for kρ = kρq , and σ = z for kz = kzq. Here, the spectral
parameters are explicitly presented in appendix A.

To reveal the biorthogonality property of these eigenvalues, equation (6) should be
rewritten in other forms. First, regardingkρq as the roots of the characteristic equation (7),
(6) is rewritten as

Ā1 · Ψρ
q (k) − kρqB̄1 · Ψρ

q (k) = Φ(k) (10)
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where bothĀ1 and B̄1 are Hermitian operators. These eigenvaluesΨρ
q (k), which form a

complete set in the spectral space [33], are biorthogonality [33, 38]:Ψρ∗
p (k) · B̄1 ·Ψρ

q (k) =
N2

q δpq . Here, δpq denotes the Kronecker delta function (i.e. it is 1 forp = q, and 0 for
p 6= q), and the biorthogonality coefficient calculated as

N2
q + ik0γ

ωεz

{[Bρ
q (kρq, kz)]

∗ − Bρ
q (kρq, kz)} − Dρ

q (kρq, kz) − [Dρ
q (kρq, kz)]

∗

−2kρq

ωεz

[Bρ
q (kρq, kz)][B

ρ
q (kρq, kz)]

∗.

An alternative useful rewritten form of (6) is

Ā2 · Ψz
q(k) − kzqB̄2 · Ψz

q(k) = Φ(k) (11)

where both Ā2 and B̄2 are Hermitian operators, and the roots of the characteristic
equation (7) are considered to bekzq. The eigenwaves of (11), which form a complete set
in the spectral space [33], are also biorthogonality [33, 38]:Ψz∗

p (k) · B̄2 · Ψz
q(k) = M2

q δpq .
Here, the biorthogonality coefficient is found to be

M2
q = [Az

q(kρ, kzq)][D
z
q(kρ, kzq)]

∗ + [Dz
q(kρ, kzq)][A

z
q(kρ, kzq)]

∗

−[Bz
q(kρ, kzq)][C

z
q(kρ, kzq)]

∗ − [Cz
q(kρ, kzq)][B

z
q(kρ, kzq)]

∗.

Based on the completeness properties of the above-presented eigenwavesΨz
q(k) and

Ψρ
q (k), the solutions of the spectral source-incorporated equation (6) can be represented in

terms of these eigenwaves [2, 33, 38]

Ψ(k) =
∑

q

Ψz
q(k)Ψz∗

q (k)

(kzq − kz)M2
q

· Φ(k) (12)

or

Ψ(k) =
∑

q

Ψρ
q (k)Ψρ∗

q (k)

(kρq − kρ)N2
q

· Φ(k). (13)

In this way, the solutions of the spectral source-incorporated Maxwell’s equation (5) are
represented in terms of the spectral eigenwaves in the uniaxial bianisotropic-ferrite medium.
These expressions, (12) and (13), are our starting point in constructing the eigenfunction
expansion of the Green dyadics, as will be reported in detail in the following analysis.

3. Green dyadics in unbounded uniaxial bianisotropic-ferrite medium

For the sake of simplicity, we define the Green dyadicsḠ(r, r′) in the homogeneous
uniaxial bianisotropic-ferrite medium as(

E(r)

H(r)

)
=

∫
V ′

Ḡ(r, r′) ·
(

iJ(r′)
iM (r′)

)
dV ′, (14)

where V ′ is the volume occupied by the electric and magnetic exciting currents. The
definition (14) indicates that the electromagnetic fields associated with the current sources
can be expressed as a convolution of the current distribution and the three-dimensional
free-space Green dyadics.

Using the definition of Green dyadics (14) and equations (12) and (13), the Green
dyadics in the uniaxial bianisotropic-ferrite medium can be represented in terms of the
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corresponding spectral eigenwaves

Ḡ(r, r′) = 1

8π3

∫ ∞

−∞
dk

∑
q

Ψz
q(k)Ψz∗

q (k)

(kzq − kz)M2
q

e−ik·(r−r′) (15)

Ḡ(r, r′) = 1

8π3

∫ ∞

−∞
dk

∑
q

Ψρ
q (k)Ψρ∗

q (k)

(kρq − kp)N2
q

e−ik·(r−r′). (16)

Here, the convolution theorem of Fourier transformation has been employed.
It is helpful to mention that equation (15) is suitable to construct the Green dyadics of

planarly multilayered uniaxial bianisotropic-ferrite media, while equation (16) is a useful
tool to formulate the Green dyadics of a cylindrical multilayered structure consisting of
uniaxial bianisotropic-ferrite media.

To represent the Green dyadics in the forms of the eigenfunction expansion in terms of
the cylindrical vector wavefunctions, integrals with respect to the spectral longitudinal and
radial wavenumbers in equations (15) and (16) respectively will be evaluated analytically.

3.1. Analytical evaluation of the integral with respect to the spectral longitudinal
wavenumber

In this subsection, we will try to represent (15) in the form of the eigenfunction expansion
in terms of the cylindrical vector wavefunctions. For this purpose, the integral with respect
to the spectral longitudinal wavenumber,kz, is analytically evaluated by using the residue
method, which results in

Ḡ(r, r′) =
(

Ḡee(r, r′) Ḡem(r, r′)
Ḡme(r, r′) Ḡmm(r, r′)

)
= i

8π2

∫ ∞

0
dkρ

∫ 2π

φk=0
dφk

4∑
q=1

Ψz
q(k)Ψz∗

q (k)

M2
q

e−ikzq(z−z′)e−ikρρ cos(φ−φk)eikρρ ′ cos(φ′−φk)

(17)

whereρ = (x2 + y2)1/2. Here, the 3× 3 dyadicsḠee(r, r′) andḠmm(r, r′) are the Green
dyadics of electric and magnetic types, respectively; whileḠem(r, r′) and Ḡme(r, r′) are
the pseudo-type Green dyadics. It should be recognized that the following formulations are
essentially based on the fact that the spectral longitudinal wavenumberkzq is independent
of the spectral azimuthal angleφk.

Substituting into (17) the explicit expression ofΨz
q(k) and the well known identities

e−ikρρ cos(φ−φk) =
∞∑

n=−∞
(−i)nJn(kρρ)e−in(φ−φk) (18)

eikρρ ′ cos(φ′−φk) =
∞∑

m=−∞
(i)mJm(kρρ

′)eim(φ′−φk) (19)

after cumbersome mathematical manipulation by properly grouping the terms involving the
integrals for theφk variable and introducing the cylindrical vector wavefunctions, we end
up with

Ḡmm(r, r′) = i

8π

∫ ∞

0
dkρ

4∑
q=1

1

M2
q

∞∑
n=−∞

(−1)n[az
q(kρ, kzq)M

(1)
n (kρ, kzq)

+bz
q(kρ, kzq)N

(1)
n (kρ, kzq) + cz

q(kρ, kzq)L
(1)
n (kρ, kzq)]
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×[az′
q (kρ, kzq)M

(1)′
−n (kρ, −kzq) + b

′z
q (kρ, kzq)N

(1)′
−n (kρ, −kzq)

+cz′
q (kρ, kzq)L

(1)′
−n (kρ ′ , −kzq)] (20)

where the primes over the vector wavefunctions denote that they are evaluated atr′. Here,
the techniques of mathematical manipulation are similar to those we have used in [9–12]
to obtain the field representations in the source-free regions. The expansion coefficients are
found to be

aσ
q (kρ, kz) = −2iBσ

q (kρ, kz)

kρ

(21)

bσ
q (kρ, kz) = −2kqA

σ
q (kρ, kz)

kρkz

+ 2

kq

[
1 + kρA

σ
q (kρ, kz)

kz

]
(22)

cσ
q (kρ, kz) = 2ikz

k2
q

[
1 + kρA

σ
q (kρ, kz)

kz

]
(23)

with kq = (k2
z + k2

ρ)
1/2. aσ ′

q (kρ, kz), bσ ′
q (kρ, kz) andcσ ′

q (kρ, kz) are separately derived from
aσ

q (kρ, kz), bσ
q (kρ, kz) andcσ

q (kρ, kz) with the replacement ofAσ
q (kρ, kz) andBσ

q (kρ, kz) by
their complex conjugates, respectively. It should be noted that the rootskz = kzq or (7) are
chosen such that Re[kzq] > 0 for z > z′, and Re[kzq] < 0 for z < z′, where Re[.] denotes
the real part of a complex function. Here, the cylindrical vector wavefunctions are defined
in appendix B.

The Green dyadic of electric typēGee(r, r′) can be obtained from̄Gmm(r, r′), with
the replacement ofaz

q , bz
q , cz

q , az′
q , bz′

q , cz′
q by dz

q , ez
q , f z

q , dz′
q , ez′

q , f z′
q , respectively. Here, the

expansion coefficients are determined as

dσ
q (kρ, kz) = −2iDσ

q (kρ, kz)

kρ

(24)

eσ
q (kρ, kz) = −2kzC

σ
q (kρ, kz)

kρ, kq

+ 2[ik0γ − kρB
σ
q (kρ, kz)]

kqωεz

(25)

f σ
q (kρ, kz) = 2i

k2
q

[
kρC

σ
q (kρ, kz) + kz[ik0γ − kρB

σ
q (kρ, kz)]

ωεz

]
(26)

for σ = z, and kz = kzq. dσ ′
q (kρ, kz), eσ ′

q (kρ, kz) and f σ ′
q (kρ, kz) can be obtained from

dσ
q (kρ, kz), eσ

q (kρ, kz) and f σ
q (kρ, kz) with the replacement ofCσ

q (kρ, kz), Dσ
q (kρ, kz) and

[ik0γ − kρB
σ
q (kρ, kz)] by their complex conjugates, respectively. The pseudo-type Green

dyadicsḠem(r, r′) can be obtained from̄Gmm(r, r′), with the substitution ofaz
q , bz

q , cz
q

by dz
q , ez

q , f z
q , respectively; andḠme(r, r′) can be derived fromḠmm(r, r′), with the

replacement ofaz′
q , bz′

q , cz′
q by dz′

q , ez′
q , f z′

q , separately.
It should be mentioned that the present eigenfunction expansion of the Green dyadics can

be reduced to the counterparts of the reciprocal chiral medium [24], if lettingεt = εz = ε,
µt = µz = µ, α = γ = ξc, and g = β = 0 in the constitutive relations. This set of
the eigenfunction representation of the Green dyadics can be used to construct the Green
dyadics of planarly multilayered uniaxial bianisotropic-ferrite media, by applying the method
of scattering superposition [4, 24] and appropriate electromagnetic boundary conditions.

Straightforward mathematical analysis reveals that for dipole sources parallel to the
z-axis, only the terms corresponding ton = 0 exist for the Green dyadics, while the
Green dyadics of dipole sources perpendicular to thez-axis contain only then = 1 terms.
Therefore, Sommerfeld–Weyl-type integrals of dipole radiation in a uniaxial bianisotropic-
ferrite medium involve only those Sommerfeld–Weyl-type integrals of dipole radiation in
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an isotropic medium [39]. So, various approximate, asymptotic, and numerical methods
for Sommerfeld–Weyl-type integrals [39] can be applied to study the electromagnetic
resonance, radiation, propagation, and scattering phenomena of planarly multilayered
uniaxial bianisotropic-ferrite media.

3.2. Analytical evaluation of the integral with respect to the spectral radial wavenumber

In this subsection, we will try to represent (16) in the form of the eigenfunction expansion
in terms of the cylindrical vector wavefunctions. To this end, employing the identities (18)
and (19), the integral with respect to the spectral radial wavenumberkρ is analytically
evaluated by applying the residue calculus through a modified contour in thekρ plane,
which results in

Ḡ(r, r′) =
(

Ḡee(r, r′) Ḡem(r, r′)
Ḡme(r, r′) Ḡmm(r, r′)

)

=



i

16π2

∫ ∞

−∞
dkz

∫ 2π

φk=0
dφk

∑
q

Ψρ
q (k)Ψρ∗

q (k)

N2
q

e−ikz(z−z′)

×
∞∑

n=−∞
(−i)nJn(kρqρ)e−in(φ−φk)

∞∑
m=−∞

imH(2)
m (kρqρ

′)e−ım(φ′−φk) ρ 6 ρ ′

i

16π2

∫ ∞

−∞
dkz

∫ 2π

φk=0
dφk

∑
q

Ψρ
q (k)Ψρ∗

q (k)

N2
q

e−ikz(z−z′)

×
∞∑

n=−∞
(−i)nH (2)

n (kρqρ)e−in(φ−φk)
∞∑

m=−∞
imJm(kρqρ

′)eim(φ′−φk) ρ > ρ ′.

(27)

Here, we have employed the identity [4]∫ ∞

0
dkρ

T̄ [Jn(kρρ)Jn(kρρ
′)]

(kρq − kρ)N2
q

= iπ

2N2
q

T̄ [H(2)
n (kρqρ>)Jn(kρqρ<)] (28)

whereρ> = max(ρ, ρ ′), ρ< = min(ρ, ρ ′), and T̄ stands for a dyadic operator, having the
property ofT̄ (kρ) = −T̄ (−kρ).

Substituting the explicit expression ofΨρ
q (k) in (27) and properly grouping the

terms involving the integrals with respect to theφk variable, the Green dyadics in the
uniaxial bianisotropic-ferrite medium can be represented in terms of the cylindrical vector
wavefunctions:

Ḡmm(r, r′) = i

16π

∫ ∞

−∞
dkz

2∑
q=1

1

N2
q

∞∑
n=−∞

(−1)n[aρ
q (kρq, kz)M

(τ1)
n (kρq, kz)

+bρ
q (kρq, kz)N

(τ1)
n (kρq, kz) + cρ

q (kρq, kz)L
(τ1)
n (kρq, kz)]

×[aρ ′
q (kρq, kz)M

(τ2)
′

−n (kρq, −kz) + bρ ′
q (kρq, kz)N

(τ2)
′

−n (kρq, −kz)

+cρ ′
q (kρq, kz)L

(τ2)
′

−n (kρq, −kz)] (29)

Ḡee(r, r′) can be obtained from̄Gmm(r, r′), with the replacement ofaρ
q , b

ρ
q , c

ρ
q , a

ρ ′
q , b

ρ ′
q ,

c
ρ ′
q by d

ρ
q , e

ρ
q , f

ρ
q , d

ρ ′
q , e

ρ ′
q , f

ρ ′
q , respectively;Ḡem(r, r′) can be derived fromḠmm(r, r′),

with separate substitution ofaρ
q , b

ρ
q , c

ρ
q by d

ρ
q , e

ρ
q , f

ρ
q ; Ḡme(r, r′) can be obtained from

Ḡmm(r, r′), with the replacement ofaρ ′
q , b

ρ ′
q , c

ρ ′
q by d

ρ ′
q , e

ρ ′
q , f

ρ ′
q , respectively. Here,τ1 = 1,
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τ2 = 4 for ρ 6 ρ ′, andτ1 = 4, τ2 = 1 for ρ > ρ ′. The expansion coefficients used here can
be straightforwardly obtained from equations (21–23) and (24–26), with the substitution of
σ = ρ andkρ = kρq .

In equation (29),kρ3 and kρ4 are not included in the summation sincekρ3 = −kρ1,
kρ4 = −kρ2 and these symmetric roots are automatically taken into account as the spectral
azimuthal angleφk spans from 0 to 2π .

It should be pointed out that the Green dyadics represented in the form of the
eigenfunction expansion, as given in this subsection, can be verified by comparing
their special forms with the counterparts of reciprocal chiral medium [25] and isotropic
medium [4]. Moreover, they can be used to construct the Green dyadics of a cylindrically
multilayered structure consisting of uniaxial bianisotropic-ferrite media, by employing
the method of scattering superposition [4, 25] and appropriate electromagnetic boundary
conditions.

The resulting equations in this subsection indicate that the electromagnetic waves in an
unbounded uniaxial bianisotropic-ferrite medium are transversely outgoing forρ > ρ ′, and
transversely standing forρ 6 ρ ′. This physical property of the electromagnetic waves is
similar to that of a dielectric leaky antenna with infinitely long circular cylindrical structure,
positioned in an unbounded isotropic medium.

From the present formulations, it is easily seen thatḠRS(r, r′) 6≡ ḠT
RS(r

′, r) with
R(S) = e or m, as can also be directly obtained from the reciprocal theorem [26]. In
addition, it can be straightforward to derive the mathematical relationship among these
Green dyadics, which could also be obtained from the definition of the Green dyadics (14)
and the source-incorporated Maxwell’s equations (3):

Ḡem(r, r′) = − i

ω
ε̄−1 · [(∇ × Ī − iωξ̄) · Ḡmm(r, r′)] (30)

Ḡem(r, r′) = i

ω
µ̄−1 · [(∇ × Ī + iωζ̄) · Ḡee(r, r′)] (31)

whereĪ denotes the 3× 3 unit dyadic.
The electromagnetic fields associated with the exciting sources can be obtained

from (14), by substituting either set of the above-presented Green dyadics. From the
present formulations, it can be seem that the solutions of the source-incorporated Maxwell’s
equations for homogeneous uniaxial bianisotropic-ferrite medium are composed of two (or
four) eigenwaves travelling with different wavenumbers. Each of these eigenwaves is a
superposition of two transverse waves (M and N represent two transverse waves) and a
longitudinal wave.

The essential idea of the method employed here, which is standard and straightforward,
can be exploited to derive the eigenfunction expansion of the Green dyadics in a spherical
coordinate system. However, since the wavenumbers of the eigenwaves are functions
of the direction of these eigenwaves, simple compact forms of the field representations
(corresponding to those of [9–12]) in the source-free uniaxial bianisotropic-ferrite media by
the spherical vector wavefunctions cannot be obtained, and the solutions of the source-
incorporated Maxwell’s equations cannot be directly formulated in compact forms of
the spherical vector wavefunctions, either. In the circular cylindrical coordinate system,
however, it is seen from the present formulations that since the wavenumbers of the
eigenwaves do not depend on the spectral azimuthal angleφk, the solutions of the source-
incorporated Maxwell’s equations in the uniaxial bianisotropic-ferrite medium can be
represented in compact forms of the cylindrical vector wavefunctions.
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4. Concluding remarks

In the present contribution, the eigenfunction expansion of the Green dyadics in an
unbounded uniaxial bianisotropic-ferrite medium are developed in terms of the cylindrical
vector wavefunctions, based on the concept of spectral eigenwaves. The analysis indicates
that the solutions of the source-incorporated Maxwell’s equations in a uniaxial bianisotropic-
ferrite medium are composed of two (or four) eigenwaves travelling with different
wavenumbers. Each of these eigenwaves is a superposition of two transverse waves and a
longitudinal wave. The Green dyadics of planarly and cylindrically multilayered structures
consisting of uniaxial bianisotropic-ferrite media can be straightforwardly obtained by
employing the method of scattering superposition and appropriate electromagnetic boundary
conditions, respectively. The constraint condition of the present approach, which is standard
and straightforward, is that the spectral longitudinal (and radial) wavenumbers do not depend
on the spectral azimuthal angleφk. In spite of this constraint condition which makes
the approach employed here only applicable to a limited class of materials, the present
formulations can be used to analyse and understand the physical phenomena of the source-
incorporated electromagnetic boundary value problems involving unbounded or multilayered
uniaxial bianisotropic-ferrite media. It is of interest to note that cylindrical vector
wavefunctions can be expanded as discrete sums of the spherical vector wavefunctions [40],
therefore the present formulations could be extended to solve the problems of spherical
structures. Since the uniaxial bianisotropic-ferrite media studied here recover the isotropic
media [4, 14], uniaxial bianisotropic media [30], transversely chiral uniaxial bianisotropic
media [28], uniaxial chiro-omega media [31], and the extensively studied chiral media
[24, 25], the present formulations can be specifically applied to these materials, and
theoretically verified by comparing their special forms with the already existing results
corresponding to the isotropic media [4] and reciprocal chiral media [24, 25]. When the
present uniaxial bianisotropic-ferrite media reduce to the media treated in [34–37], the
Green dyadics formulated here can be represented in simple closed forms as those of
[34–37], after the integrals are explicitly evaluated, respectively. In addition, the method
employed here can be extended to derive the eigenfunction expansion of Green dyadics
in other kinds of media, such as transversely isotropic elastic media [41], transversely
isotropic piezoelectric solids [42], and transversely isotropic saturated porous media [43].
Although the present formulations are somewhat cumbersome which is inevitable due to
the complexity of the material we have tried to tackle, they are important and useful
in analysing and understanding the (equivalently) source-incorporated electromagnetic
phenomena of the uniaxial bianisotropic-ferrite media. Even if there exist two operations in
the present formulations which are over infinite domains, convergence of these operations
has been numerically examined for the source-free problems [9–12]. For the source-
incorporated problems, verification for the convergence of the operations is straightforward.
Moreover, these two operations over infinite domains also exist for isotropic media [4] and
reciprocal chiral media [24, 25], therefore various numerical and asymptotic methods [39]
can be employed to simplify the computation in practical applications. In our previous
investigation, the problems we treated are the source-free Maxwell’s equations in the given
complex media [9–12], while in the present study we have tried to analytically solve the
source-incorporated problems by the cylindrical vector wavefunctions. From a mathematical
point of view, our previous investigation [9–12] is essentially based on the method of spectral
angular expansion, while the present starting point is the completeness property of the
spectral eigenwaves. It is believed that the present formulations provide fundamental basis
to analyse the (equivalently) source-incorporated electromagnetic phenomena of uniaxial
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bianisotropic-ferrite media, to study Raman and fluorescent scattering by active molecules
embedded in a uniaxial bianisotropic-ferrite medium, and to understand the physical
process of this class of media. Applications of the present formulations in analysing the
electromagnetic scatter, propagation, resonance, and radiation phenomena relevant to the
uniaxial bianisotropic-ferrite media are under investigation, and will be reported in the near
future.
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Appendix A. Explicit expressions for the spectral parameters of equation (9)

Straightforward mathematical manipulation to equation (6) results in theqth eigenwaves (9),
where the explicit expressions for the spectral parameters are found to be

Aσ
q (kρ, kz) = kρ [(kz − f )(ε′k2

ρ + k2
z − a) + e(bkz + c)]/Eσ

q (kρ, kz) (A1)

Bσ
q (kρ, kz) = kρ [e(k2

z − a) − (bkz + c)(kz − f )]/Eσ
q (kρ, kz) (A2)

Eσ
q (kρ, kz) = (k2

z − a)(ε′k2
ρ + k2

z − a) + (bkz + c)2 (A3)

Cσ
q (kρ, kz) = 1

ωεt

[ik0αAσ
q (kρ, kz) + (ik0β + kz)B

σ
q (kρ, kz)] (A4)

and

Dσ
q (kρ, kz) = 1

ωεt

[ik0αBσ
q (kρ, kz) + kρ − (ik0β + kz)A

σ
q (kρ, kz)]. (A5)

Appendix B. Definition of the cylindrical vector wavefunctions

The cylindrical vector wavefunctions used here are defined as

M (j)
n (kρ, kz) = ∇ × (Ψ(j)

n (kρ, kz)ez] (B1)

N (j)
n (kρ, kz) = 1

kq

∇ × M (j)
n (kρ, kz) (B2)

L(j)
n (kρ, kz) = ∇Ψ(j)

n (kρ, kz) (B3)

where the generating function is

Ψ(j)
n (kρ, kz) = Z(j)

n (kρ, ρ)e−i(kzz+nφ) (B4)

and

Z(j)
n (kρρ) =


Jn(kρρ) j = 1

Yn(kρρ) j = 2

H(1)
n (kρρ) j = 3

H(2)
n (kρρ) j = 4.

(B5)
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